First invented in 1985 by IBM in Zurich, Atomic Force Microscopy (AFM) is a scanning probe technique for imaging. It involves a nanoscopic tip attached to a microscopic, flexible cantilever, which is ...
Atomic Force Microscopy (AFM) has evolved into a central technique in nanotechnology, providing three-dimensional imaging and precise measurements at the atomic scale. Its ability to probe surfaces by ...
Atomic force microscopy (AFM) is a way to investigate the surface features of some materials. It works by “feeling” or “touching” the surface with an extremely small probe. This provides a ...
Invented 30 years ago, the atomic force microscope has been a major driver of nanotechnology, ranging from atomic-scale imaging to its latest applications in manipulating individual molecules, ...
Researchers at Oak Ridge National Laboratory have used specialized tools to study materials at the atomic scale and analyze ...
Schematic illustration of Friction Force Microscopy (FFM). The AFM cantilever, a small diving board-like structure about 200 micrometers long, 50 micrometers wide, and 1 micrometer thick, has a sharp ...
A major advantage of atomic force microscopes (AFMs) is their versatility in integrating various operational modes that assess different material properties and functionalities. Among the most ...
An atomic force microscope tip writes data in stable ferroelectric structures, enabling reliable multistate storage at ...
SANTA BARBARA, Calif.--(BUSINESS WIRE)--Oxford Instruments Asylum Research announced today that its next-generation Atomic Force Microscope (AFM), Vero, has received three prestigious awards. Vero AFM ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results